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Smart meters

from https://stopsmartmeters.org

• Smart meters
 Report fine-grained profiles 

of energy usage
• Many benefits to utility 

companies
 Management cost down, 

demand prediction, time-of-
use pricing, and so on

• Customers also beneficial
• But also threaten user 

privacy!
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Privacy issues (1/2)

from https://smartgridawareness.org
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low-frequency variation
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Privacy issues (2/2)

from https://smartgridawareness.org
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high-frequency variation
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Delaying the era of smart grids

“I want my old meter back,
paying $5 fee each month for 
employees to read the meter.”

from CBS 5 News in Phoenix, Arizona

from https://stopsmartmeters.org
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Battery-based load hiding (BLH)

• A battery between the smart 
meter and appliances

• What the smart meter reports
 How we charge the battery

• Appliances use energy stored 
in the battery
 Decouples meter readings 

from actual usage profile
• Has some limitations

power grid

controller

battery

appliances

smart
meter

yn

xn

xn: usage profile
yn: meter reading
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Typical ways to control the battery
• Flattening high-frequency components [1,2]
 Effective in hiding load signatures
 Does not change much the shape of usage 

profile envelop
• Discrete-state Markov decision process 

(MDP) [3]
 Can hide both low- and high-frequency 

components
 Required to know the probability 

distribution of usage profile
 Quantization: performance vs. complexity

xn
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[1] Kalogridis et al.,, "Privacy for smart meters: Towards undetectable appliance load signatures” 
SmartGridComm2010
[2] Yang et al., "Minimizing private data disclosures in the smart grid" CCS2012
[3] Koo et al., "Privatus: Wallet-friendly privacy protection for smart meters." ESORICS2012
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Our contributions
• Hides both low- and high-frequency variations of usage profile in 

practical setup
 No quantization of energy usage
 No knowledge about probability distribution of usage

• Cost savings by exploiting Time-of-Use (TOU) pricing
 Charge the battery when price is low and use the stored energy when 

the price is high
 Reinforcement learning based optimal decisions on how much to 

charge
• Speedup learning
 Synthetic data generation in run-time
 Reuse of data in early phases

9/25



Solution approach

10



Dependable Computing Systems Laboratory

System model

0 ≤ 𝑥𝑥𝑛𝑛 ≤ 𝑥𝑥𝑀𝑀
0 ≤ 𝑦𝑦𝑛𝑛 ≤ 𝑥𝑥𝑀𝑀

0 ≤ 𝑏𝑏𝑛𝑛 ≤ 𝑏𝑏𝑀𝑀

𝑏𝑏𝑛𝑛 = 𝑏𝑏𝑛𝑛−1 + 𝑦𝑦𝑛𝑛−1 − 𝑥𝑥𝑛𝑛−1

reported
to utilities

rechargeable
battery

consumed
by appliances

Usage profile

a continuous variable
physical limit

Meter reading

Battery level

capacity

same limit
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Privacy protection
• Changing 𝑦𝑦𝑛𝑛 in every 𝑛𝑛was shown to be not good.
 Causes significant correlation between 𝑥𝑥𝑛𝑛−1 and 𝑦𝑦𝑛𝑛

• We shape the meter readings as rectangular pulses.
 Change the values of 𝑦𝑦𝑛𝑛 only once every 𝑛𝑛𝐷𝐷 measurement 

intervals
 Like high-frequency flattening, this reduces correlation 

between 𝑥𝑥𝑛𝑛 and 𝑦𝑦𝑛𝑛 for 𝑛𝑛𝐷𝐷 intervals
• The pulse magnitude changes for cost savings
 Hides low-frequency variation as well, since the magnitude is 

determined mainly based on the current battery level, not the 
shape of usage profile

From Koo et al., "Privatus: Wallet-friendly privacy protection for smart meters." ESORICS2012
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Cost savings (1/2)
• How to achieve cost savings?
 Charge a battery when price is low, and use the stored energy when 

price is high
• Cost savings of a day, denoted by S:

what you pay w/o RL-BLH
what you pay w/ RL-BLH

maximum cost savings = 𝑟𝑟𝐻𝐻 − 𝑟𝑟𝐿𝐿 𝑏𝑏𝑀𝑀

13/25

rate (price)

𝑆𝑆 = �
𝑛𝑛=1

𝑛𝑛𝑀𝑀

𝑟𝑟𝑛𝑛𝑥𝑥𝑛𝑛 −�
𝑛𝑛=1

𝑛𝑛𝑀𝑀

𝑟𝑟𝑛𝑛𝑦𝑦𝑛𝑛

= �
𝑛𝑛=1

𝑛𝑛𝑀𝑀

𝑟𝑟𝑛𝑛(𝑥𝑥𝑛𝑛−𝑦𝑦𝑛𝑛)

e.g., 𝑟𝑟𝐿𝐿=7.04 cent per kWh and 𝑟𝑟𝐻𝐻=21.09 cent per kWh
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Cost savings (2/2)
• Cost savings for the 𝑘𝑘-th decision interval

𝑆𝑆𝑘𝑘 𝑎𝑎 = �
𝑛𝑛= 𝑘𝑘−1 𝑛𝑛𝐷𝐷+1

𝑘𝑘𝑛𝑛𝐷𝐷

𝑟𝑟𝑛𝑛(𝑥𝑥𝑛𝑛 − 𝑎𝑎)

• The maximum cost savings of a day

max𝐸𝐸 �
𝑘𝑘=1

𝑘𝑘𝑀𝑀

𝑆𝑆𝑘𝑘(𝑎𝑎) = max
𝑎𝑎

𝑄𝑄∗ 1,𝐵𝐵1,𝑎𝑎

• Bellman equations
𝑄𝑄∗ 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎 = �

−𝑥𝑥𝑀𝑀𝑛𝑛𝐷𝐷

𝑥𝑥𝑀𝑀𝑛𝑛𝐷𝐷
𝑃𝑃𝑘𝑘(𝑧𝑧) 𝑆𝑆𝑘𝑘 𝑎𝑎 + max

𝑎𝑎𝑎
𝑄𝑄∗(𝑘𝑘 + 1,𝐵𝐵𝑘𝑘 + 𝑧𝑧,𝑎𝑎′) 𝑑𝑑𝑑𝑑

The maximum cost savings we can achieve
with 𝑎𝑎 from 𝑘𝑘 to 𝑘𝑘𝑀𝑀 Immediate return with 𝑎𝑎

at 𝑘𝑘
The maximum we can achieve
from 𝑘𝑘+1 to 𝑘𝑘𝑀𝑀

Probability that the change
in the battery level is z
from 𝑘𝑘 to 𝑘𝑘 + 1
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𝑆𝑆 = �
𝑛𝑛=1

𝑛𝑛𝑀𝑀

𝑟𝑟𝑛𝑛(𝑥𝑥𝑛𝑛−𝑦𝑦𝑛𝑛)

𝐵𝐵𝑘𝑘=𝑏𝑏(𝑘𝑘−1)𝑛𝑛𝐷𝐷+1
battery level at the beginning
of the k-th decision interval
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Reinforcement learning to maximize cost savings
• 𝑄𝑄∗ 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎 estimated by a running average

𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎 ← 1 − 𝛼𝛼 𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎 + 𝛼𝛼 𝑆𝑆𝑘𝑘 𝑎𝑎 + max
𝑎𝑎𝑎

𝑄𝑄(𝑘𝑘 + 1,𝐵𝐵𝑘𝑘+1,𝑎𝑎′)

can be rewritten as:
𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎

← 𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎 + 𝛼𝛼 𝑆𝑆𝑘𝑘 𝑎𝑎 + max
𝑎𝑎𝑎

𝑄𝑄(𝑘𝑘 + 1,𝐵𝐵𝑘𝑘+1,𝑎𝑎′) − 𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎

𝑄𝑄∗ 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎 = 𝐸𝐸 � ≈
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑖𝑖

unknown

Q learning

Δ𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎

𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎 converges when Δ𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎 goes to zero
16/25

𝑄𝑄∗ 𝑘𝑘,𝐵𝐵𝑘𝑘, 𝑎𝑎 = �
−𝑥𝑥𝑀𝑀𝑛𝑛𝐷𝐷

𝑥𝑥𝑀𝑀𝑛𝑛𝐷𝐷
𝑃𝑃𝑘𝑘(𝑧𝑧) 𝑆𝑆𝑘𝑘 𝑎𝑎 + max

𝑎𝑎𝑎
𝑄𝑄∗(𝑘𝑘 + 1,𝐵𝐵𝑘𝑘 + 𝑧𝑧, 𝑎𝑎′) 𝑑𝑑𝑑𝑑



Dependable Computing Systems Laboratory

Q approximation
• The number of possibilities for state 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎 is infinite

 Explicitly representing 𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎 for all possible states is infeasible.
• Approximate 𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎 by a linear combination of representative 

features
𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎 = ∑𝑖𝑖=05 𝑤𝑤𝑖𝑖

(𝑎𝑎)𝑓𝑓𝑖𝑖(𝑘𝑘,𝐵𝐵𝑘𝑘)

𝒊𝒊 𝟎𝟎 𝟏𝟏 𝟐𝟐 𝟑𝟑 𝟒𝟒 𝟓𝟓
𝑓𝑓𝑖𝑖(𝑘𝑘,𝐵𝐵𝑘𝑘) 1 �𝑘𝑘 �𝑏𝑏 �𝑘𝑘�𝑏𝑏 �𝑘𝑘2 �𝑏𝑏2

�𝑘𝑘 = 𝑘𝑘/𝑘𝑘𝑀𝑀 �𝑏𝑏 = 𝐵𝐵𝑘𝑘/𝑏𝑏𝑀𝑀

17/25

𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎 ← 𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎 + 𝛼𝛼 𝑆𝑆𝑘𝑘 𝑎𝑎 + max
𝑎𝑎𝑎

𝑄𝑄(𝑘𝑘 + 1,𝐵𝐵𝑘𝑘+1, 𝑎𝑎′) − 𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎
a continuous variable
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Training
• We minimize E Δ𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎 2

𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘,𝑎𝑎 ← 𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘,𝑎𝑎 + 𝛼𝛼 𝑆𝑆𝑘𝑘 𝑎𝑎 + max
𝑎𝑎𝑎

𝑄𝑄(𝑘𝑘 + 1,𝐵𝐵𝑘𝑘+1,𝑎𝑎′) − 𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘,𝑎𝑎

• With the stochastic gradient descent, the weights can be learned by:

𝑤𝑤𝑖𝑖
(𝑎𝑎) ← 𝑤𝑤𝑖𝑖

(𝑎𝑎) + 𝛼𝛼Δ𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎 𝑓𝑓𝑖𝑖(𝑘𝑘,𝐵𝐵𝑘𝑘)

18/25

Δ𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎

learning rate
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Means to expedite learning
• Generating synthetic data on the fly
 Convergence to the optimal decision policy takes time, which is 

proportional to the time to collect enough number of training samples
 Can reduce the time to convergence by feeding artificially generated 

data
 Every 𝑑𝑑𝐺𝐺 days, we generate 𝑡𝑡𝐺𝐺 days of artificial usage profiles

𝑥𝑥𝑛𝑛 is sampled according to its statistical characteristic that is coarsely learned

• Reuse of data
 Initial values of weights 𝑤𝑤𝑖𝑖

(𝑎𝑎) are random
 In early phase, data is not fully utilized
 Until the first 𝑑𝑑𝑅𝑅 days, we store the usage profile of each day, and re-

train the system 𝑡𝑡𝑅𝑅 times using the profiles

19/25
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Evaluation metrics
• Mutual information (MI)

𝑀𝑀𝑀𝑀 =
1

𝑛𝑛𝑀𝑀 − 1
�
𝑛𝑛=1

𝑛𝑛𝑀𝑀−1𝐻𝐻 𝑋𝑋𝑛𝑛 − 𝐻𝐻(𝑋𝑋𝑛𝑛|𝑌𝑌𝑛𝑛)
𝐻𝐻(𝑋𝑋𝑛𝑛)

• Pearson correlation coefficient (CC)
𝐶𝐶𝐶𝐶 =

∑𝑛𝑛=1
𝑛𝑛𝑀𝑀 (𝑥𝑥𝑛𝑛 − 𝑥̅𝑥)∑𝑛𝑛=1

𝑛𝑛𝑀𝑀 (𝑦𝑦𝑛𝑛 − �𝑦𝑦)

∑𝑛𝑛=1
𝑛𝑛𝑀𝑀 𝑥𝑥𝑛𝑛 − 𝑥̅𝑥 2 ∑𝑛𝑛=1

𝑛𝑛𝑀𝑀 𝑦𝑦𝑛𝑛 − �𝑦𝑦 2

• Saving ratio (SR)
𝑆𝑆𝑆𝑆 = 𝐸𝐸

∑𝑛𝑛=1
𝑛𝑛𝑀𝑀 𝑟𝑟𝑛𝑛(𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛)
∑𝑛𝑛=1
𝑛𝑛𝑀𝑀 𝑟𝑟𝑛𝑛𝑥𝑥𝑛𝑛

𝐻𝐻 𝜒𝜒 = −�
𝑖𝑖

𝑃𝑃 𝜒𝜒 = 𝑖𝑖 log2 𝑃𝑃(𝜒𝜒 = 𝑖𝑖)

𝑋𝑋𝑛𝑛 = (𝑥𝑥𝑛𝑛 ,𝑥𝑥𝑛𝑛+1)
𝑌𝑌𝑛𝑛 = (𝑦𝑦𝑛𝑛 ,𝑦𝑦𝑛𝑛+1)

uncertainty reduction by observing 𝑌𝑌𝑛𝑛

normalized and averaged

sample means

High-frequency variation:
Load signatures

Low-frequency shape:
Behavioral patterns

Cost savings

cost savings
original cost 21/25

The smaller the better

The smaller the better

The higher the better
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Comparison with a prior scheme (1/2)
low-price high-price low-price high-price

charged

used

22/25

(𝑛𝑛𝐷𝐷= 10)
[1] Kalogridis et al.,, "Privacy for smart meters: Towards undetectable 
appliance load signatures” SmartGridComm2010

(high-frequency flattening)
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Comparison with a prior scheme (2/2)
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Effects of heuristics for speedup

24/25

~ Δ𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎
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Concluding remarks
• RL-BLH hides both low- and high-frequency signals in energy usage
 Protection to high-frequency information comparable to the low-pass 

filtering
 Protection to low-frequency information superior to the low-pass 

filtering
• Cost savings by exploiting Time-of-Use (TOU) pricing
 ~15% cost savings with 5kWh battery in a typical home

Cost saving is proportional to the battery capacity
 Provides an economical benefit in addition to privacy protection
 Caters to cost-conscious as well as privacy-conscious users 

• Speedup learning
 Significantly reduces the learning time
 Makes the solution practical

25/25
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