RL-BLH: Learning-Based Battery Control for

Cost Savings and Privacy Preservation for
Smart Meters

Jinkyu Koo, Xiaojun Lin, and Saurabh Bagchi
Purdue University, West Lafayette

{kooj, linx, sbagchi}@purdue.edu

PURDUE Dependable Computing Systems Laboratory



Introduction




Smart meters
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» Report fine-grained profiles
of energy usage

= Management cost down,
demand prediction, time-of-
use pricing, and so on

_ threaten user
privacy!



Privacy Issues (1/2)
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low-frequency variation
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Privacy issues (2/2)
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Delaying the era of smart grids
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Battery-based load hiding (BLH)

y B controller * How we charge the battery
n =
“ [.. h battery

smart X

meter n

X.: usage profile sppliances = Decouples meter readings
y,: meter reading ! from actual usage proflle
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Typical ways to control the battery

» Quantization: performance vs. complexity

» Effective in hiding load signatures
s = Does not change much the shape of usage
=" | profile envelop
y_ ™ measurement intarvaln = Can hide both low- and high-frequency
" components
3 » Required to know the probability
2 distribution of usage profile
Xn 1 yn gep
0

[1] Kalogridis et al.,, "Privacy for smart meters: Towards undetectable appliance load signatures”
SmartGridComm2010
PURDUE ) [2] Yang et al., "Minimizing private data disclosures in the smart grid" CCS52012
Dependable Computlng Systems Laboratory [3] Koo et al., "Privatus: Wallet-friendly privacy protection for smart meters." ESORICS2012



Our contributions

= No guantization of energy usage
= No knowledge about probability distribution of usage

= Charge the battery when price is low and use the stored energy when
the price Is high

» Reinforcement learning based optimal decisions on how much to
charge

» Synthetic data generation in run-time
» Reuse of data in early phases
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Solution approach




System model
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Privacy protection

= Causes significant correlation between x,,_; and y,

From Koo et al., "Privatus: Wallet-friendly privacy protection for smart meters." ESORICS2012

n
1 2 n
* Change the values of y,, only once every n, measurement b

Intervals

= Like high-frequency flattening, this reduces correlation
between x,, and y,, for ny intervals

decision interval

= Hides low-frequency variation as well, since the magnitude is
determined mainly based on the current battery level, not the
shape of usage profile
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Cost savings (1/2)

» Charge a battery when price is low, and use the stored energy when

price is high
low-price zone high-price zone
what you pay w/o RL-BLH by T T T
what you pay w/ RL-BLH i i
< : !
() 1 1
S @ : :
> ; !
g : :
n rate (price) § | |
- z Tn(xn_yn) measurement interval n m
n=1

maximum cost savings = (ry — 1) by
e.g., 1.=7.04 cent per kWh and r4=21.09 cent per kWh
PURDUE Dependable Computing Systems Laboratory



Cost savings (2/2)

leD

Sp(a) = z 15, (x, — a) S= ) |m(n—yn)

\ n=(k-1np+1 n=1

N\

Q" (k, By, a)

k k+1 end

km
max E z Si(a) |= maxQ*(1,B;,a)
a
k=1
Si(a) max Q" (k + 1,Bx +z,a’)

0*(k, By, a) = j " p(2) (Sk(@) + max Q" (k + 1, By + z a)) dz

_x n —
M™D Br=bk-1ynp+1
Probability that the change battery level at the beginning

in the battery level is z Immediate return with @ of the k-th decision interval
fromktok +1 at k

The maximum cost savings we can achieve
with a from k to ky,

The maximum we can achieve
from k+1 to ky,
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Reinforcement learning




Reinforcement learning to maximize cost savings

XMMNp

N
Q*(k, By, @) = j Pe(2) (Sk(a@) + max Q" (k + 1, By + 2, a))dz Q*(k,By,a) = E(-) ~ %z sample;
i=1

—XMNp

unknown

Q(k, Bki Cl) « (1 o (X)Q(k, Bki Cl) T a (Sk(a) + HEX Q(k T 11 Bk+1i a,)) Q learning

can be rewritten as:
Q(k, Bk: a)

— Q(k,By,a) +«a (Sk(a) + max Q(k + 1,By4q,a") — Q(k, By, a))

,Acz(k;l3k,a)

Q(k, By, a) converges when AQ (k, By, a) goes to zero
PURDUE Dependable Computing Systems Laboratory



Q approximation

Q(kr Bk'a) < Q(kr Bk'a) +a <Sk(a) + n}f}XQ(k + 1» Bk+11a’) o Q(kr Bkla))

a continuous variable

= Explicitly representing Q(k, B, a) for all possible states is infeasible.

Q(k, By, @) = X5_o w Vi (k, By)

[ 0 1 2 3 4 5

fi(k, By) 1 k b kb k? b?
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Training

Q(k,By,a) < Q(k,By,a) + a <Sk(a) + H}Ialle(k +1,By4+1,a’) — Q(k, By, a))

AQ(k, Bk! Cl)

w.? « w4+ arQ(k, By, ) f;(k, By)

l

learning rate
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Means to expedite learning

= Convergence to the optimal decision policy takes time, which is
proportional to the time to collect enough number of training samples

= Can reduce the time to convergence by feeding artificially generated
data

» Every d, days, we generate t; days of artificial usage profiles
v x,, IS sampled according to its statistical characteristic that is coarsely learned

= |nitial values of weights wl.(a) are random

* In early phase, data is not fully utilized

= Until the first dp days, we store the usage profile of each day, and re-
train the system t, times using the profiles

PURDUE Dependable Computing Systems Laboratory






Evaluation metrics

uncertainty reduction by observing Y,

TLM—l
Wi = 1 z H(X,) — H(X,|Y,) High-frequency variation:
W = - S PG = 0loga Pl =D ny —1 £ H(X;,) Load signatures
i n=1
Xn = (Xn, Xn41) .
Yo = O Yns1) normalized and averaged
Yot (X — %) X (i — ¥)
CC = —Z=n=1"n n=1Un — Y Low-frequency shape:
_ _ Behavioral patterns
JZ G — 22 Z, 0 — 97 i

sample means

Zﬂ—/l1 T (xn o yn)
SR=F E="ry Cost savings

cost savings
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Comparison with a prior scheme (1/2)
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Comparison with a prior scheme (2/2)
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Effects of heuristics for speedup
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Concluding remarks

= Protection to high-frequency information comparable to the low-pass
filtering

» Protection to low-frequency information superior to the low-pass
filtering

» ~159% cost savings with 5kWh battery in a typical home
v Cost saving is proportional to the battery capacity

* Provides an economical benefit in addition to privacy protection
= Caters to cost-conscious as well as privacy-conscious users

= Significantly reduces the learning time
= Makes the solution practical
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