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Smart meters

from https://stopsmartmeters.org

• Smart meters
 Report fine-grained profiles 

of energy usage
• Many benefits to utility 

companies
 Management cost down, 

demand prediction, time-of-
use pricing, and so on

• Customers also beneficial
• But also threaten user 

privacy!
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Privacy issues (1/2)

from https://smartgridawareness.org
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low-frequency variation
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Privacy issues (2/2)

from https://smartgridawareness.org
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high-frequency variation
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Delaying the era of smart grids

“I want my old meter back,
paying $5 fee each month for 
employees to read the meter.”

from CBS 5 News in Phoenix, Arizona

from https://stopsmartmeters.org
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Battery-based load hiding (BLH)

• A battery between the smart 
meter and appliances

• What the smart meter reports
 How we charge the battery

• Appliances use energy stored 
in the battery
 Decouples meter readings 

from actual usage profile
• Has some limitations

power grid

controller

battery

appliances

smart
meter

yn

xn

xn: usage profile
yn: meter reading
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Typical ways to control the battery
• Flattening high-frequency components [1,2]
 Effective in hiding load signatures
 Does not change much the shape of usage 

profile envelop
• Discrete-state Markov decision process 

(MDP) [3]
 Can hide both low- and high-frequency 

components
 Required to know the probability 

distribution of usage profile
 Quantization: performance vs. complexity

xn
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[1] Kalogridis et al.,, "Privacy for smart meters: Towards undetectable appliance load signatures” 
SmartGridComm2010
[2] Yang et al., "Minimizing private data disclosures in the smart grid" CCS2012
[3] Koo et al., "Privatus: Wallet-friendly privacy protection for smart meters." ESORICS2012
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Our contributions
• Hides both low- and high-frequency variations of usage profile in 

practical setup
 No quantization of energy usage
 No knowledge about probability distribution of usage

• Cost savings by exploiting Time-of-Use (TOU) pricing
 Charge the battery when price is low and use the stored energy when 

the price is high
 Reinforcement learning based optimal decisions on how much to 

charge
• Speedup learning
 Synthetic data generation in run-time
 Reuse of data in early phases

9/25



Solution approach

10



Dependable Computing Systems Laboratory

System model

0 ≤ 𝑥𝑥𝑛𝑛 ≤ 𝑥𝑥𝑀𝑀
0 ≤ 𝑦𝑦𝑛𝑛 ≤ 𝑥𝑥𝑀𝑀

0 ≤ 𝑏𝑏𝑛𝑛 ≤ 𝑏𝑏𝑀𝑀

𝑏𝑏𝑛𝑛 = 𝑏𝑏𝑛𝑛−1 + 𝑦𝑦𝑛𝑛−1 − 𝑥𝑥𝑛𝑛−1

reported
to utilities

rechargeable
battery

consumed
by appliances

Usage profile

a continuous variable
physical limit

Meter reading

Battery level

capacity

same limit
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Privacy protection
• Changing 𝑦𝑦𝑛𝑛 in every 𝑛𝑛was shown to be not good.
 Causes significant correlation between 𝑥𝑥𝑛𝑛−1 and 𝑦𝑦𝑛𝑛

• We shape the meter readings as rectangular pulses.
 Change the values of 𝑦𝑦𝑛𝑛 only once every 𝑛𝑛𝐷𝐷 measurement 

intervals
 Like high-frequency flattening, this reduces correlation 

between 𝑥𝑥𝑛𝑛 and 𝑦𝑦𝑛𝑛 for 𝑛𝑛𝐷𝐷 intervals
• The pulse magnitude changes for cost savings
 Hides low-frequency variation as well, since the magnitude is 

determined mainly based on the current battery level, not the 
shape of usage profile

From Koo et al., "Privatus: Wallet-friendly privacy protection for smart meters." ESORICS2012
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Cost savings (1/2)
• How to achieve cost savings?
 Charge a battery when price is low, and use the stored energy when 

price is high
• Cost savings of a day, denoted by S:

what you pay w/o RL-BLH
what you pay w/ RL-BLH

maximum cost savings = 𝑟𝑟𝐻𝐻 − 𝑟𝑟𝐿𝐿 𝑏𝑏𝑀𝑀

13/25

rate (price)

𝑆𝑆 = �
𝑛𝑛=1

𝑛𝑛𝑀𝑀

𝑟𝑟𝑛𝑛𝑥𝑥𝑛𝑛 −�
𝑛𝑛=1

𝑛𝑛𝑀𝑀

𝑟𝑟𝑛𝑛𝑦𝑦𝑛𝑛

= �
𝑛𝑛=1

𝑛𝑛𝑀𝑀

𝑟𝑟𝑛𝑛(𝑥𝑥𝑛𝑛−𝑦𝑦𝑛𝑛)

e.g., 𝑟𝑟𝐿𝐿=7.04 cent per kWh and 𝑟𝑟𝐻𝐻=21.09 cent per kWh
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Cost savings (2/2)
• Cost savings for the 𝑘𝑘-th decision interval

𝑆𝑆𝑘𝑘 𝑎𝑎 = �
𝑛𝑛= 𝑘𝑘−1 𝑛𝑛𝐷𝐷+1

𝑘𝑘𝑛𝑛𝐷𝐷

𝑟𝑟𝑛𝑛(𝑥𝑥𝑛𝑛 − 𝑎𝑎)

• The maximum cost savings of a day

max𝐸𝐸 �
𝑘𝑘=1

𝑘𝑘𝑀𝑀

𝑆𝑆𝑘𝑘(𝑎𝑎) = max
𝑎𝑎

𝑄𝑄∗ 1,𝐵𝐵1,𝑎𝑎

• Bellman equations
𝑄𝑄∗ 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎 = �

−𝑥𝑥𝑀𝑀𝑛𝑛𝐷𝐷

𝑥𝑥𝑀𝑀𝑛𝑛𝐷𝐷
𝑃𝑃𝑘𝑘(𝑧𝑧) 𝑆𝑆𝑘𝑘 𝑎𝑎 + max

𝑎𝑎𝑎
𝑄𝑄∗(𝑘𝑘 + 1,𝐵𝐵𝑘𝑘 + 𝑧𝑧,𝑎𝑎𝑎) 𝑑𝑑𝑧𝑧

The maximum cost savings we can achieve
with 𝑎𝑎 from 𝑘𝑘 to 𝑘𝑘𝑀𝑀 Immediate return with 𝑎𝑎

at 𝑘𝑘
The maximum we can achieve
from 𝑘𝑘+1 to 𝑘𝑘𝑀𝑀

Probability that the change
in the battery level is z
from 𝑘𝑘 to 𝑘𝑘 + 1
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𝑆𝑆 = �
𝑛𝑛=1

𝑛𝑛𝑀𝑀

𝑟𝑟𝑛𝑛(𝑥𝑥𝑛𝑛−𝑦𝑦𝑛𝑛)

𝐵𝐵𝑘𝑘=𝑏𝑏(𝑘𝑘−1)𝑛𝑛𝐷𝐷+1
battery level at the beginning
of the k-th decision interval
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Reinforcement learning to maximize cost savings
• 𝑄𝑄∗ 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎 estimated by a running average

𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎 ← 1 − 𝛼𝛼 𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎 + 𝛼𝛼 𝑆𝑆𝑘𝑘 𝑎𝑎 + max
𝑎𝑎𝑎

𝑄𝑄(𝑘𝑘 + 1,𝐵𝐵𝑘𝑘+1,𝑎𝑎𝑎)

can be rewritten as:
𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎

← 𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎 + 𝛼𝛼 𝑆𝑆𝑘𝑘 𝑎𝑎 + max
𝑎𝑎𝑎

𝑄𝑄(𝑘𝑘 + 1,𝐵𝐵𝑘𝑘+1,𝑎𝑎𝑎) − 𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎

𝑄𝑄∗ 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎 = 𝐸𝐸 � ≈
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑖𝑖

unknown

Q learning

Δ𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎

𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎 converges when Δ𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎 goes to zero
16/25

𝑄𝑄∗ 𝑘𝑘,𝐵𝐵𝑘𝑘, 𝑎𝑎 = �
−𝑥𝑥𝑀𝑀𝑛𝑛𝐷𝐷

𝑥𝑥𝑀𝑀𝑛𝑛𝐷𝐷
𝑃𝑃𝑘𝑘(𝑧𝑧) 𝑆𝑆𝑘𝑘 𝑎𝑎 + max

𝑎𝑎𝑎
𝑄𝑄∗(𝑘𝑘 + 1,𝐵𝐵𝑘𝑘 + 𝑧𝑧, 𝑎𝑎𝑎) 𝑑𝑑𝑧𝑧
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Q approximation
• The number of possibilities for state 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎 is infinite

 Explicitly representing 𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎 for all possible states is infeasible.
• Approximate 𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎 by a linear combination of representative 

features
𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎 = ∑𝑖𝑖=05 𝑤𝑤𝑖𝑖

(𝑎𝑎)𝑓𝑓𝑖𝑖(𝑘𝑘,𝐵𝐵𝑘𝑘)

𝒊𝒊 𝟎𝟎 𝟏𝟏 𝟐𝟐 𝟑𝟑 𝟒𝟒 𝟓𝟓
𝑓𝑓𝑖𝑖(𝑘𝑘,𝐵𝐵𝑘𝑘) 1 �𝑘𝑘 �𝑏𝑏 �𝑘𝑘�𝑏𝑏 �𝑘𝑘2 �𝑏𝑏2

�𝑘𝑘 = 𝑘𝑘/𝑘𝑘𝑀𝑀 �𝑏𝑏 = 𝐵𝐵𝑘𝑘/𝑏𝑏𝑀𝑀

17/25

𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎 ← 𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎 + 𝛼𝛼 𝑆𝑆𝑘𝑘 𝑎𝑎 + max
𝑎𝑎𝑎

𝑄𝑄(𝑘𝑘 + 1,𝐵𝐵𝑘𝑘+1, 𝑎𝑎𝑎) − 𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎
a continuous variable
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Training
• We minimize E Δ𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎 2

𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘,𝑎𝑎 ← 𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘,𝑎𝑎 + 𝛼𝛼 𝑆𝑆𝑘𝑘 𝑎𝑎 + max
𝑎𝑎𝑎

𝑄𝑄(𝑘𝑘 + 1,𝐵𝐵𝑘𝑘+1,𝑎𝑎𝑎) − 𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘,𝑎𝑎

• With the stochastic gradient descent, the weights can be learned by:

𝑤𝑤𝑖𝑖
(𝑎𝑎) ← 𝑤𝑤𝑖𝑖

(𝑎𝑎) + 𝛼𝛼Δ𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 ,𝑎𝑎 𝑓𝑓𝑖𝑖(𝑘𝑘,𝐵𝐵𝑘𝑘)

18/25

Δ𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎

learning rate
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Means to expedite learning
• Generating synthetic data on the fly
 Convergence to the optimal decision policy takes time, which is 

proportional to the time to collect enough number of training samples
 Can reduce the time to convergence by feeding artificially generated 

data
 Every 𝑑𝑑𝐺𝐺 days, we generate 𝑡𝑡𝐺𝐺 days of artificial usage profiles

𝑥𝑥𝑛𝑛 is sampled according to its statistical characteristic that is coarsely learned

• Reuse of data
 Initial values of weights 𝑤𝑤𝑖𝑖

(𝑎𝑎) are random
 In early phase, data is not fully utilized
 Until the first 𝑑𝑑𝑅𝑅 days, we store the usage profile of each day, and re-

train the system 𝑡𝑡𝑅𝑅 times using the profiles

19/25
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Evaluation metrics
• Mutual information (MI)

𝑀𝑀𝑀𝑀 =
1

𝑛𝑛𝑀𝑀 − 1
�
𝑛𝑛=1

𝑛𝑛𝑀𝑀−1𝐻𝐻 𝑋𝑋𝑛𝑛 − 𝐻𝐻(𝑋𝑋𝑛𝑛|𝑌𝑌𝑛𝑛)
𝐻𝐻(𝑋𝑋𝑛𝑛)

• Pearson correlation coefficient (CC)
𝐶𝐶𝐶𝐶 =

∑𝑛𝑛=1
𝑛𝑛𝑀𝑀 (𝑥𝑥𝑛𝑛 − �̅�𝑥)∑𝑛𝑛=1

𝑛𝑛𝑀𝑀 (𝑦𝑦𝑛𝑛 − �𝑦𝑦)

∑𝑛𝑛=1
𝑛𝑛𝑀𝑀 𝑥𝑥𝑛𝑛 − �̅�𝑥 2 ∑𝑛𝑛=1

𝑛𝑛𝑀𝑀 𝑦𝑦𝑛𝑛 − �𝑦𝑦 2

• Saving ratio (SR)
𝑆𝑆𝑆𝑆 = 𝐸𝐸

∑𝑛𝑛=1
𝑛𝑛𝑀𝑀 𝑟𝑟𝑛𝑛(𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛)
∑𝑛𝑛=1
𝑛𝑛𝑀𝑀 𝑟𝑟𝑛𝑛𝑥𝑥𝑛𝑛

𝐻𝐻 𝜒𝜒 = −�
𝑖𝑖

𝑃𝑃 𝜒𝜒 = 𝑖𝑖 log2 𝑃𝑃(𝜒𝜒 = 𝑖𝑖)

𝑋𝑋𝑛𝑛 = (𝑥𝑥𝑛𝑛 ,𝑥𝑥𝑛𝑛+1)
𝑌𝑌𝑛𝑛 = (𝑦𝑦𝑛𝑛 ,𝑦𝑦𝑛𝑛+1)

uncertainty reduction by observing 𝑌𝑌𝑛𝑛

normalized and averaged

sample means

High-frequency variation:
Load signatures

Low-frequency shape:
Behavioral patterns

Cost savings

cost savings
original cost 21/25

The smaller the better

The smaller the better

The higher the better
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Comparison with a prior scheme (1/2)
low-price high-price low-price high-price

charged

used

22/25

(𝑛𝑛𝐷𝐷= 10)
[1] Kalogridis et al.,, "Privacy for smart meters: Towards undetectable 
appliance load signatures” SmartGridComm2010

(high-frequency flattening)
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Comparison with a prior scheme (2/2)

23/25
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Effects of heuristics for speedup

24/25

~ Δ𝑄𝑄 𝑘𝑘,𝐵𝐵𝑘𝑘 , 𝑎𝑎
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Concluding remarks
• RL-BLH hides both low- and high-frequency signals in energy usage
 Protection to high-frequency information comparable to the low-pass 

filtering
 Protection to low-frequency information superior to the low-pass 

filtering
• Cost savings by exploiting Time-of-Use (TOU) pricing
 ~15% cost savings with 5kWh battery in a typical home

Cost saving is proportional to the battery capacity
 Provides an economical benefit in addition to privacy protection
 Caters to cost-conscious as well as privacy-conscious users 

• Speedup learning
 Significantly reduces the learning time
 Makes the solution practical

25/25
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